See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Computational Fluid Dynamicsx

Air Bubbles Motion Through Fresh Concrete During Concreting Process

E. Chuta [1], J. Jeong [2],
[1] Université Paris-Est, IRC-ESTP, Cachan, France
[2] IRC-ESTP, Cachan, France

Over the last years, the concrete technology has progressed in order to improve the quality of its use and mechanical performances. Despite the technical development known in the context of concrete, the esthetic aspect remains weakly treated. Among the esthetic problems, there is the ... Read More

Depth-Averaged Modeling of Groundwater Flow and Transport

P. Kitanidis
Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

In many groundwater studies, the areal extent of an aquifer is much larger than its thickness so that flow and transport take place primarily in horizontal directions. Thus, the most common type of modeling in practical applications is two-dimensional involving vertically averaged ... Read More

Numerical Analysis of the Thermal Resistance of a Multi-Layer Reflective Insulation Material Enclosed by Cavities under Varied Angles

R.S. Pelzers[1], A.W.M. van Schijndel[2]
[1]Former student Building Physics, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands
[2]Chair Building Physics, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands

A numerical analysis on the thermal performance of a sample, consisting of two cavities surrounding a Multi-Layer Reflective Insulation (MLRI) material, under various angles and for downward and upward heat flows was performed. The sample reached high thermal resistance values when ... Read More

Development of a Single Cell Trapping Microfluidic Device

L. Weng [1], F. Ellett [1], J. F. Edd [1], M. Toner [1,2],
[1] Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
[2] Shriners Hospital for Children, Boston, MA, USA

Array-based technologies are important for many applications in drug discovery, microbiology and cell biology. A large-scale array of single cells allows high-throughput monitoring of behaviors of individual cells in parallel, avoiding the lack of cell specificity inherent to bulk ... Read More

实现微流控粒子分选芯片几何参数预估与高效设计的传递函数拟合法

张岩 [1],
[1] 清华大学精密仪器系,北京,中国

引言: 对于微流控分选芯片而言,分支出口的位置、宽度等几何参数会直接影响到粒子分选精度与回收效率。但是,遗憾的是,对于流道各分支出口位置的高效设计方法却鲜有报道。当前的设计方法主要是对每一种目标粒子直接进行轨迹仿真[1~7]。但这种方法的运算成本巨大,如果粒子分散体系涉及到的粒径种类繁多且流道结构复杂,那么对每种粒径都进行仿真分析将会使得计算量与计算精度之间的矛盾愈加尖锐;而且,每引入一种没有被仿真研究过的粒径,都要对其重新进行仿真运算,运算成本巨大[8~10]。 据此,本文提出了一种结合有限元分析仿真与系统辨识方法的粒子出射位置预测方法 ... Read More

Boundary conditions in multiphase, porous media, transport models of thermal processes with rapid evaporation

A. Datta[1], and A. Halder[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA

In modeling of thermal processing of biological materials with rapid evaporation, it is critical to provide boundary conditions consistent with the phenomena happening at the surface to accurately predict spatial temperature and moisture content for quality and safety assurance. Boundary ... Read More

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic ... Read More

Optimizing Design of Soil Mixing Equipment through COMSOL Multiphysics® Simulations

T. Qiu[1], W. C. Kogelmann[2], K. Talebi[3]
[1]Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
[2]Alpine Sales & Rental Corp./Alpine Equipment LLC, State College, PA, USA
[3]Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA, USA

Soil mixers are widely used to mix biochemical agents and additives to remediate contaminated soils or drill cuttings and sludges. Through COMSOL Multiphysics simulations, this paper aims to evaluate the effect of geometric configuration of the blades and rotational speed on the mixing ... Read More

Virtual Pharmacokinetic Model of the Human Eye new

L. Murtomäki[1], S. Kotha[2]
[1]Aalto University, Greater Helsinki, Finland
[2]University Of Helsinki, Helsinki, Finland

There is a great need for an effective drug treatment of the posterior eye, as the major reason for visual disability in industrial countries is Age-related Macular Degeneration (AMD). In USA alone, there are almost 2 million people affected by AMD [1]. A virtual pharmacokinetic 3D model ... Read More

CAE-Based Design and Optimization of a Plasma Reactor for Hydrocarbon Processing

C. Soares [1], F. A. Cassini [1], N. Padoin [1],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil

Plasma reactors can be applied to the conversion of waste, biomass and fuels to synthesis gas (mixture of hydrogen and carbon dioxide) with efficiencies as higher as 90-95% and low energy demand, depending on the design optimization. In this work, a multi-step approach was applied to the ... Read More