See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Computational Fluid Dynamicsx

Magnetic Control of Deformation of a Ferrofluid Droplet in Simple Shear Flow

C. Wang [1], M. R. Hassan [1],
[1] Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, USA

This study investigates the effect of uniform magnetic field on the deformation of a ferrofluid droplet in a two dimensional (2D) simple shear flow by means of numerical simulation. The magnetic field is applied in a perpendicular direction to the flow direction. A numerical scheme ... Read More

Performance Prediction of Eddy Current Flowmeter for Sodium

P. Sharma[1], S. K. Dash[1], B. K. Nashine[1], S. S. Kumar[1], R. Veerasamy[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu

Sodium is used as a coolant in Fast Breeder Reactors. Eddy Current Flowmeter (ECFM) is used for measurement of sodium flow in the primary pump and at the outlet of the subassemblies. Eddy Current Flowmeter (ECFM) works on the principle of change in the magnetic field profile due to ... Read More

On The Purification Of Waste Waters Using Multi-Bore Filters: Simulation Of A Long-Term Filtration Stage

I. Borsi
Dipartimento di Matematica U. Dini, Universita' di Firenze, Italy

We present the progress of the simulation activity we are carrying out within the PURIFAST LIFE+ project. We first present the model we formulated to describe the macroscopic effects of the filtration process taking place in a multi-bore filter, focusing on the fouling phenomenon. In ... Read More

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on ... Read More

Design and Analysis of Fluid Structure Interaction for Elbow Shaped Micro Piping System new

V. S. P. Rajesh[1]
[1]St. Mary's Group of Institutions, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India

Fluid and structure Interaction analysis can be applied to versatile fields of engineering applications, helps in understanding the affects of one material on other, thereby reducing the effect of physical parameters like nonlinear response, vibration in flow channel etc. Rapid ... Read More

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. ... Read More

Modeling of Mixing-Sensitive Pharmaceutical Drug Substance Processes in Batch Reactors

F. Akpinar [1], B. Cohen [1], J. Tabora [1], A. Glace [1], K. Lauser [1], F. Lora Gonzalez [1], J. Albrecht [1],
[1] Bristol-Myers Squibb, New Brunswick, NJ, USA

Manufacturing of pharmaceutical drug substances involves chemical unit operations that are dependent on effective mixing, particularly reactions and crystallizations. Poor mixing can cause uneven distribution of chemical species in stirred tanks, leading to impurity formation and ... Read More

A Modified Koutecký-Levich Equation for the Analysis of Electrochemical Flow Cells with Complex Geometries

S. A. Tschupp [1], S. E. Temmel [1], N. Poyatos Salguero [1], J. Herranz [1], T.J. Schmidt [2],
[1] Paul Scherrer Institut, Villigen, Switzerland
[2] ETH Zürich, Zürich, Switzerland

Electrochemical flow cells have found widespread use in analytical chemistry due to their short response time, high sensitivity and selectivity. The geometrical flexibility and therefore, the ease of coupling the electrochemical to other experimental techniques has attracted considerable ... Read More


张岩 [1],
[1] 清华大学精密仪器系,北京,中国

引言: 对于微流控分选芯片而言,分支出口的位置、宽度等几何参数会直接影响到粒子分选精度与回收效率。但是,遗憾的是,对于流道各分支出口位置的高效设计方法却鲜有报道。当前的设计方法主要是对每一种目标粒子直接进行轨迹仿真[1~7]。但这种方法的运算成本巨大,如果粒子分散体系涉及到的粒径种类繁多且流道结构复杂,那么对每种粒径都进行仿真分析将会使得计算量与计算精度之间的矛盾愈加尖锐;而且,每引入一种没有被仿真研究过的粒径,都要对其重新进行仿真运算,运算成本巨大[8~10]。 据此,本文提出了一种结合有限元分析仿真与系统辨识方法的粒子出射位置预测方法 ... Read More

Change in the Flow Rate Through a Deformed Valve

D. Kekejian[1], Y. Martinez[1]
[1]ITESO, Tlaquepaque, Jalisco, Mexico

In this work, a new design is suggested which functions both as a pipe for fluid transfer and as a valve which decreases the flow of the fluid in the opposite direction in case there are pressure fluctuations in the pipe. Therefore, we call it a "Deformed Valve". To design the structure, ... Read More